

Moderne LC/LC-MS-Verfahren zur Online-Analyse biotechnologischer Prozesse

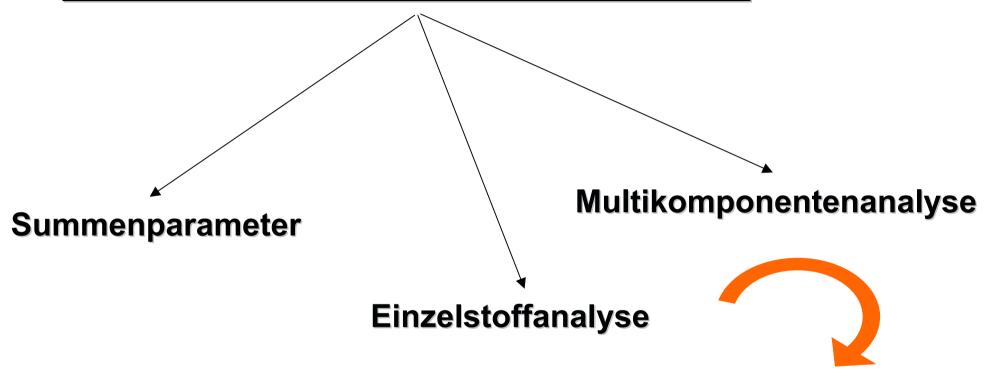
Astrid Rehorek

Inhalte

- 1. Prozessanalysentechnik in der Biotechnologie
- 2. Online-Einzel- und Mehrkomponentenanalyse
- 3. Online-LC/LC-MS-Beispiele
 - Online-Kontrolle eines Kläranlagenzulaufs
 - Online-Monitoring in einem anaerob/aeroben Bioreaktor zur Ermittlung von optimalen Prozessführungsparametern
 - Multi-Analyser Bioreaktorsystem

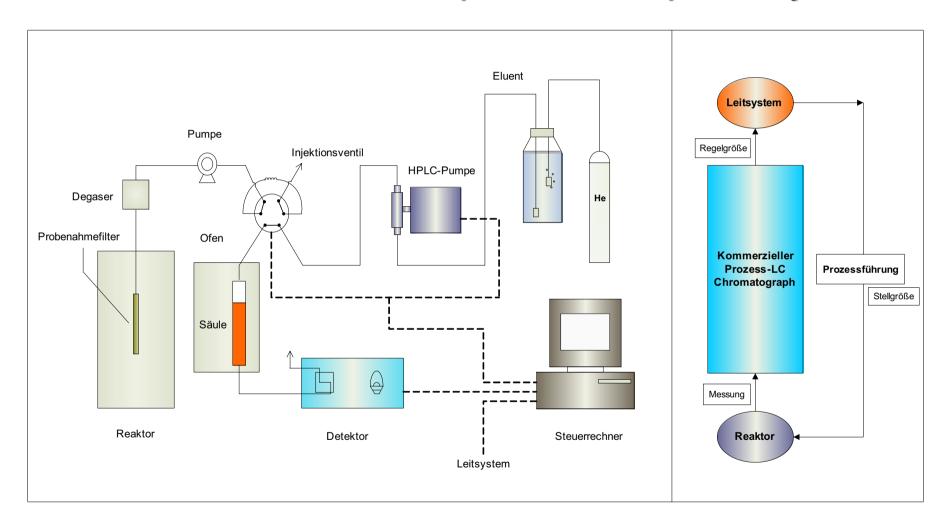
Bioprozessanalysenmesstechnik

Analysator	Einsatz
UV-VIS Spektrometer (UV-VIS)	Insitu- und Online-Monitoring in der flüssigen Phase
Fluoreszens-Spektroskopie	Zellkonzentrationsmessung, Zellmetabolismus
Nuklear-Magnetische-Resonaz-Spektroskopie (NMR)	Zellmetabolismus
Fourier-Transformations-Nahinfrarot-Spektrometer (FT IR)	Insitu-Monitoring in komplexen Matrizes, z.B. Fettsäuren in Bioreaktoren
Nah-Infrarot-Spektrometer (NIR)	Gasanalyse
Fourier-Transformations-Mikrowellen-Spektrometer (FT MW)	Gasanalyse (Ozon)
<u>Biosensoren</u> (Kombination eines Mikroorganismus, Antikörpers, Enzyms, etc. mit einem Messumformer)	In-Situ-Einsatz zellfreier Lösungen, "Realzeit"-signale bei hoherSelektivität


Online messbare abwasserrelevante Summenparameter

Messaufgabe	Online-Methode
pH-Wert TOC/VOC	Potentiometrische Methode Katalytische Verbrennung mit IR-Detektion (mit VOC-Kanal), Verdünnung und Filterung; UV-VIS
TN	Verbrennungs-/Chemilumineszenz-Methode
CSB	Oxidierung mit Ozon - Sensorische Sauerstoffmessung in der Gasphase, Elektrochemisch, Spektroskopisch
BSB	Erfassung als Kurzzeit-BSB (Respirationsrate)
DOC	Reinstwasser DOC (UV-Zersetzung und Leitfähigkeitsmessung)
UV-VIS	(inline) Xenon Blitzlampe mit DAD, Fiberoptische Spektrometer

Online-Analytik biotechnologischer Prozesse



Ziel: Vordefinierte Produktqualität

Prozess-Flüssigchromatographen: Modulare HPLC-Betriebsmessplätze oder Komplett-Analysatoren

Kommerzielle LC-Prozesschromatographen

Hersteller	Bezeichnung	Detektoren	Anwendungsgebiete
Bayer Technology Services	Baychro <i>MAT</i> ® (GC, HPLC, GPC)	Verschiedene Detektoren	Bestimmung der Molmasse in Polymeranlagen, Prozesskontrolle, Nebenkomponenten im ppm-Bereich, Isomerenbestimmung
Dionex	DX 800 Prozesschromatograph (LC)	UV-, Leitfähigkeits-, und elektrochemischer Detektor	Spurenbest. in Reinstwasser, org. Säuren bei Nylonherstellung, Nitrit/Nitrat Kläranlage, Fermenter- Monitoring

Ionenchromatographischer Process-LC-Analysator der Firma *DIONEX*

DX-800

Modulare LC/LC-MS Prozessanalysentechnik

Automatisierte, kontinuierliche Online-Probenahmetechniken

Sedimentation/Porenfiltration

Automatisierte SPE/ SPME

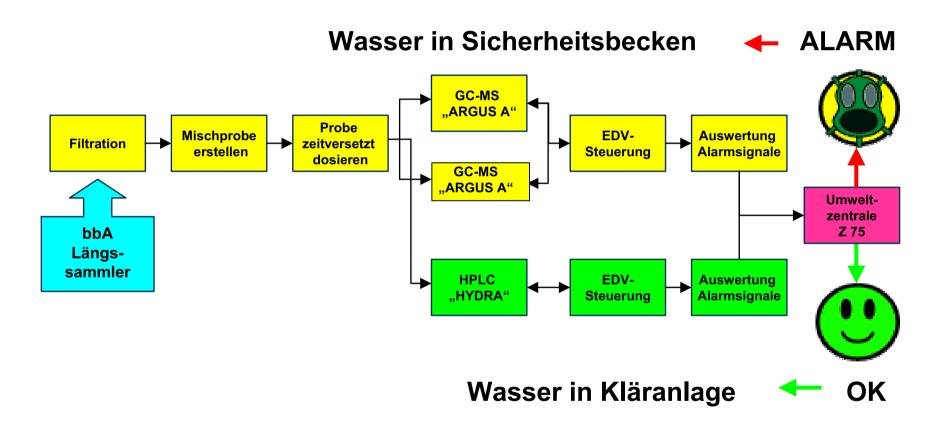
Mikro- u. Ultrafiltration

Membranextraktion

Online-Kontrolle eines Kläranlagenzulaufs

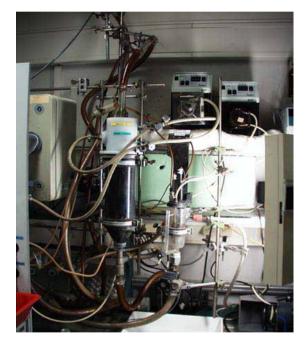
Etablierung eines automatisierten
Online-Analysensystems,
das die Kläranlage und damit die Umwelt
vor Stoßbelastungen durch
plötzliche, hohe Stoffemissionen
von organischen Einzelkomponenten schützt.

Mit freundlicher Genehmigung der BASF, Dr. Kurz



Konzeption der BASF- Kläranlagen-Online-Überwachung:

ARGUS und HYDRA



Probenvorbereitung für ARGUS und HYDRA

Sandfang

Bandfilter

Vorlage

Prinzip von ARGUS / HYDRA

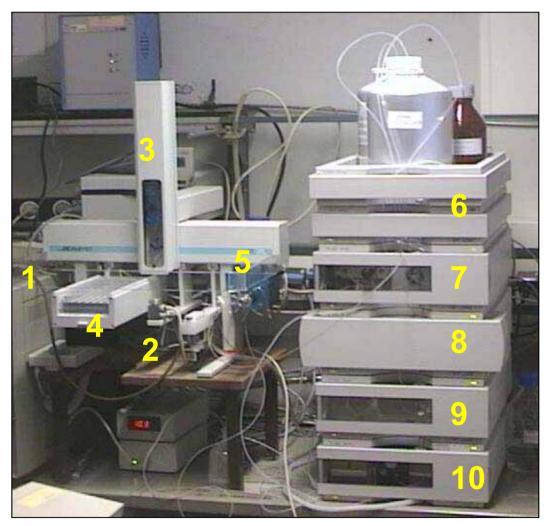
ARGUS:

- Prinzip: GC/MS-Analyse mit Wasserdirektinjektion
- gaschromatographisch erfassbare Stoffe
- Messzyklus ca. 40 min (effektiv 20 min; 2 Geräte)
- 130 Stoffe kalibriert
- Arbeitsbereich: 1-100 mg/L

HYDRA:

- Prinzip: Ionenpaarchromatographie mit Dioden-Arrayund Fluoreszenz-Detektion
- polare und höhermolekulare Stoffe
- Messzyklus: 20 min
- ca. 45 Stoffe kalibriert
- Arbeitsbereich: 0,1-20 mg/L (sehr stoffspezifisch)

ARGUS


BASF

HYDRA

- 1 Probezufuhr
- 2 Durchflußzelle
- 3 Injektionsspritze
- 4 Testlösungen
- 5 Injektionsventil
- 6 Laufmittel + Entgaser
- 7 Pumpe
- 8 Säulenofen
- 9 Dioden-Array-Detektor
- 10 Fluoreszenz-Detektor

Ferndiagnose-Tools

- a) Fern-Zugriff auf Chromatogramme und Reports über das Internet mit Bereitschaftsdienst-Laptop
- b) Fernsteuerung der Geräte
- Web-Cam zur visuellen Beurteilung von Fehlfunktionen und Anleitung bei Reparaturen
- d) Fehlermeldung nach Auswertung der Qualitätskriterien werden als SMS auf Bereitschaftsdienst-Handy übertragen

Summary: ARGUS und HYDRA

- ARGUS und HYDRA überwachen kontinuierlich den Zulauf der Kläranlage auf ca. 200 organische Einzelstoffe.
- Systeme laufen seit mehreren Jahre mit nahezu 100%-iger Verfügbarkeit ARGUS: seit 1992, ca. 350.000 Analysen

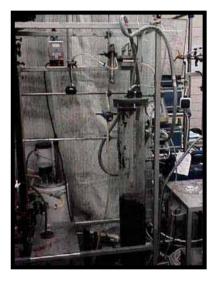
HYDRA: seit 2001, ca. 100.000 Analysen

- Zentrale Überwachung ist billiger als Einzelüberwachung in den Betrieben.
- Bei mehreren Einleitern werden kumulative Effekte berücksichtigt.
- Systeme werden auch zum Abwassermanagement benutzt.

Unerwünschter Farbe auf der Spur –

LC-MS-Monitoring zur Prozessoptimierung der biologischen Behandlung von Farbabwasserkonzentraten

Gefördert duch



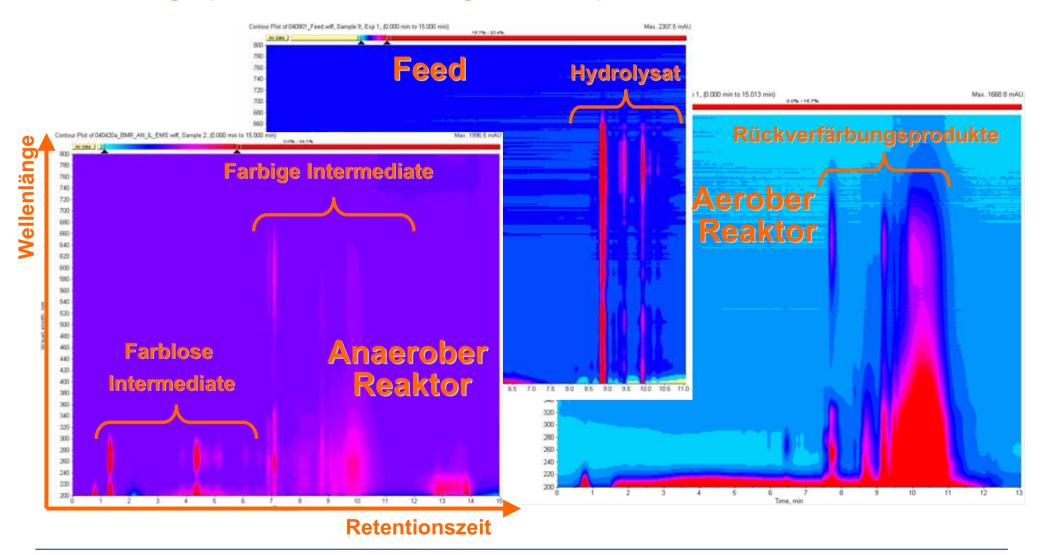
Entwicklung von anaerob/aeroben Bio-Membran-Reaktoren für die Behandlung von textilen Azofarbstoff-Abwasserkonzentraten

1998-1999

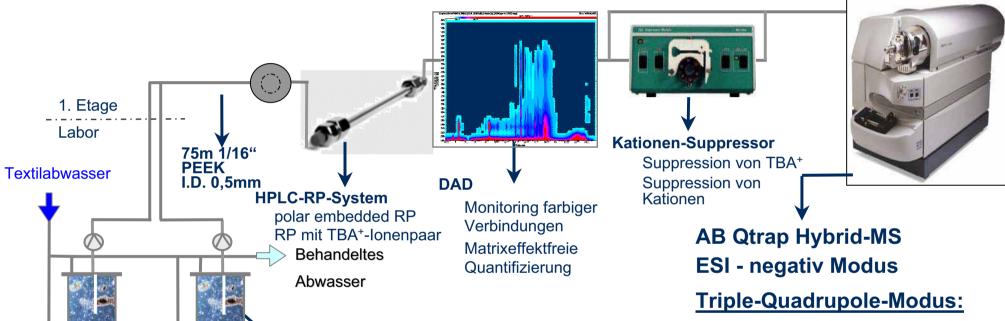
- 3-Liter anaerob/aerobe BMR (ungekoppelt)
- Offline-UV/VIS Spektroskopie
- Offline pH -Messung

2000-2001

- 10-Liter gekoppeltes anaerob/aerobes BMR-System
- Online-UF-LC-DAD-Monitoring
- Online-RI-Monitoring
- Offline pH-&
 Redoxmessung


2002-2005

- 40-Liter anaerob/aerob BMR-System
- Automat. Messdatenerfassung+Steuerung
- Online-MF-HPLC-DAD-Spektroskopie


Chromatographische Auftrennung von Realproben

Set-up und Methodenentwicklung des massenspektroskopischen Verfahrens: Online-MF-HPLC-DAD-IC-ESI-MS²- Analysenverfahren

Kontinuierliche Probenahme mit

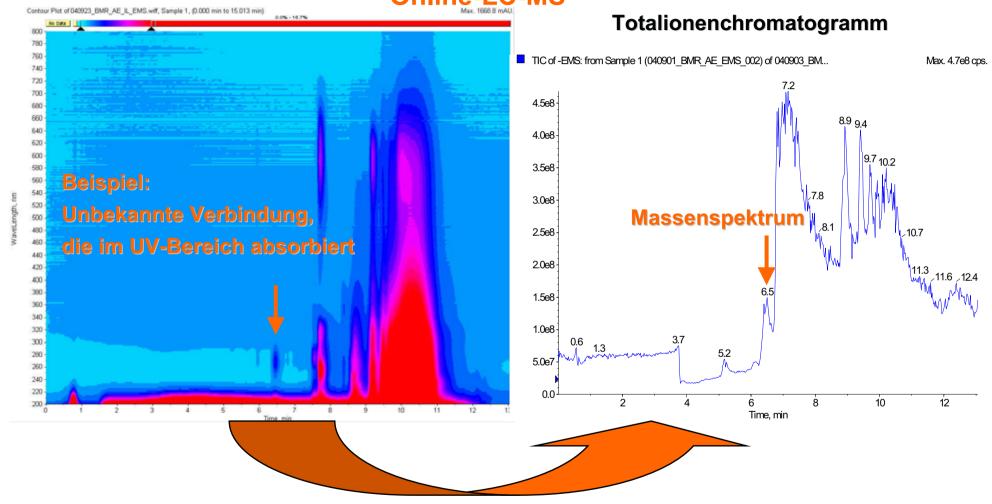
Inline-Mikrofiltrationssonde

Zweistufiger anaerob/aerober Bioreaktor (2 x 40L)

Selektive und empfindliche Quantifizierung mit MRM

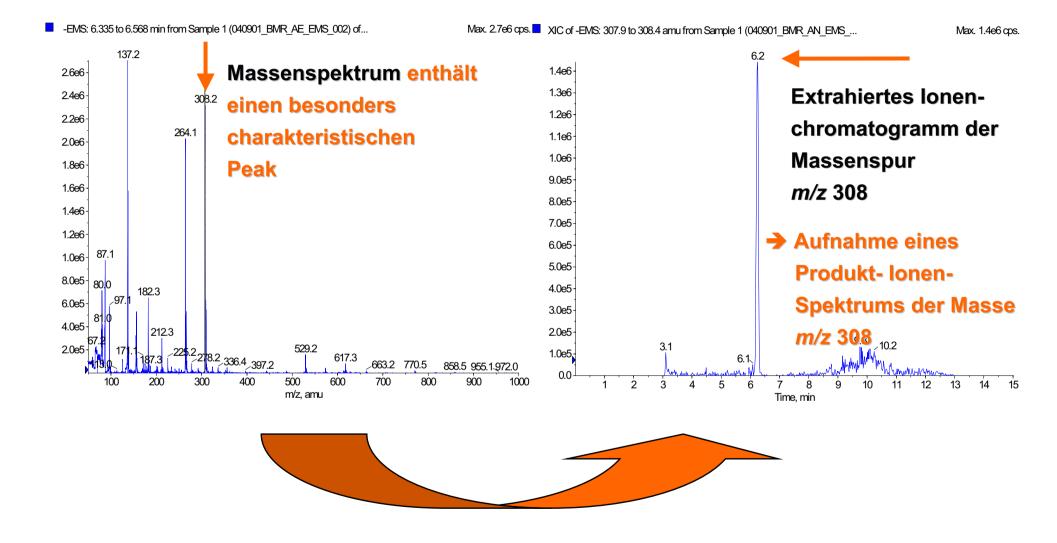
IonTrap-Modus:

Enhanced (E) MS-Scans: EMS, EPI, EMC, MS³ für die Strukturanalyse

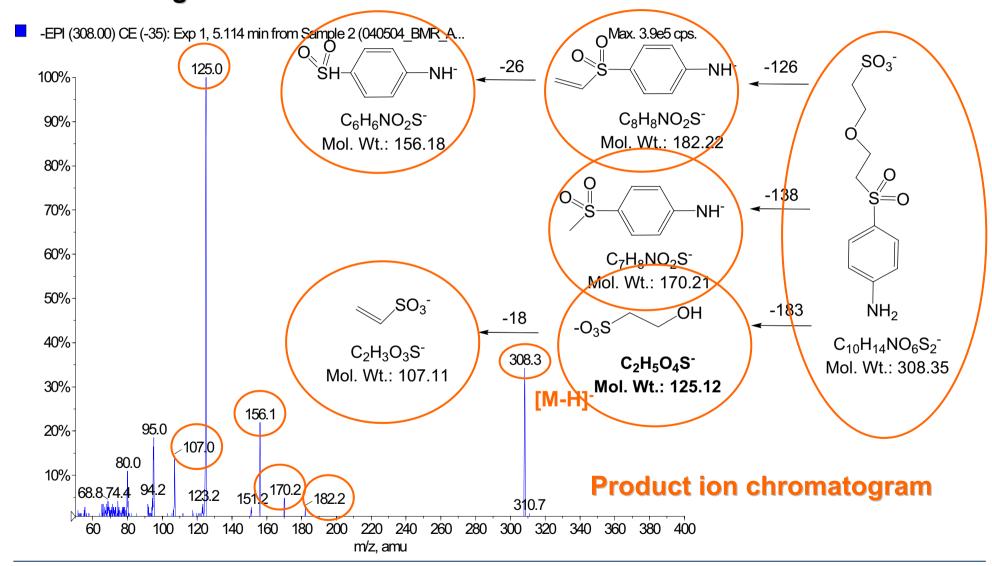


Strukturaufklärung von Azofarbstoffintermediaten mittels Online-LC-MS² aus Realmatrix

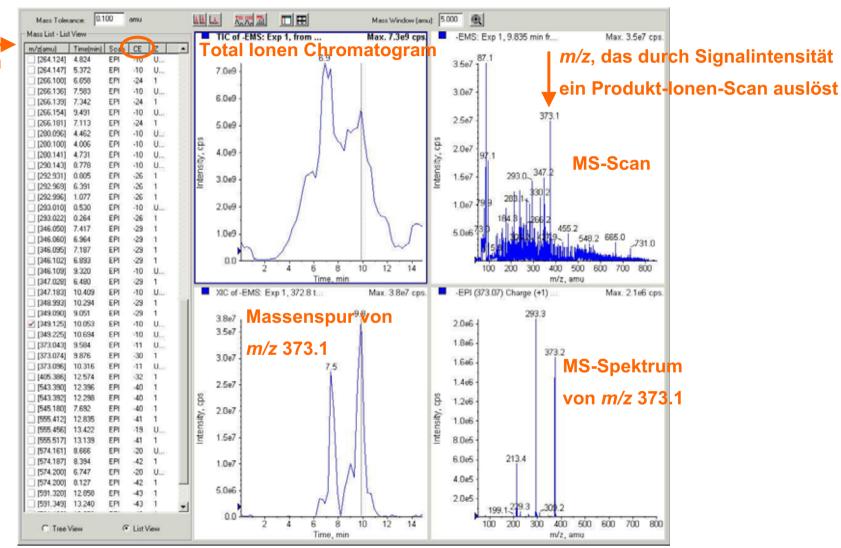
- Charakterisierung von primären und sekundären Verbindungen hydrolysierter Reaktiver Farbstoffe im <u>Feed</u> (Reaktorzulauf aus Realmatrixabwasser)
- Identifizierung von primären Abbauprodukten der anaeroben und aeroben biologischen Behandlung mittels Online-LC-MS² im Klärschlamm
- Strukturaufklärung durch Interpretation von Fragmentierungsmustern erzeugt aus negativen und positiven lonen


Identifizierung von Farbabbau-Intermediaten aus Realmatrix durch Online-LC-MS

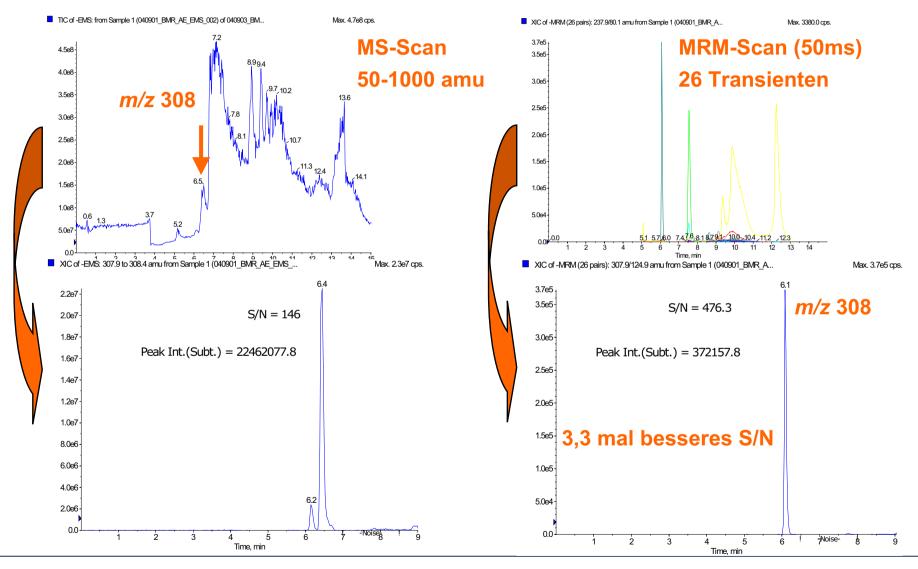
ESI(-)-MS-Scan 50-1700 amu



Identifizierung eines Intermediats aus Realmatrix durch Online-LC-MS



Information Dependent Aquisition - IDA


Liste von Ionen mit *m/z*,
Retentionszeit und Kollisionsenergie von denen automatisch ein Produkt-Ionen-Scan aufgenommen wurde.

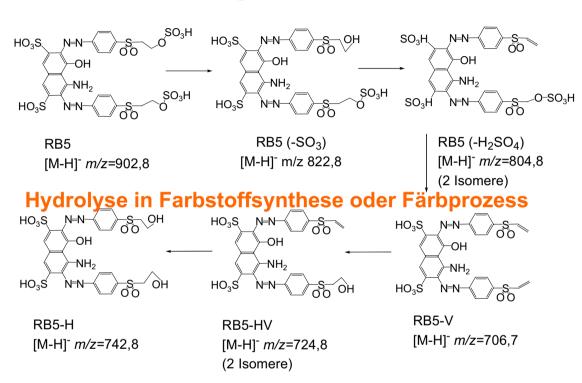
Hochselektives Monitoring von Intermediaten im MRM-Modus

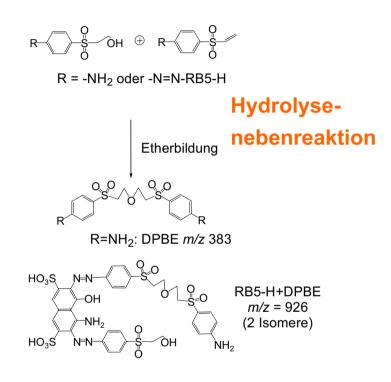
Methodenvalidierung mittels simulierter Farbabwässer in Salzlösung

c = μM, n=5	РВ	Metanilsäure	RO107-H	TAHNDS _{DP2}	H-Säure	RB-OH	RB5-H	
MW	201	173	442	348	319	532	743	
RT (min)	2.2	5.4	7.1	7.3	7.5	7.8	8.0	
Q1 (amu)	200	171.8	441	346.9	317.8	264.6	370.5	
Q3 (amu)	107.9	80	186.1	187.1	237.8	80	370.6	
DP (V)	-56	-51	-81	-61	-151	-31	-41	
EP (V)	-10	-10	-7	-9.5	-7.5	-8.5	-7	
CEP (V)	-13.52	-12	-22	-18	-16	-14	-18	
CE (V)	-28	-34	-66	-44	-36	-48	-8	
CXP (V)	0	0	-4	-4	-4	0	-4	
LOD (MRM)	***n.b.	0.59	0.001	0.001	0.010	0.003	0.012	
LLOD (MRM)	-	4.88	0.610	0.153	0.122	4.88	1.22	
ULOD (MRM)	-	78.1	625	78	7.81	313	313	
r ² *,**	-	*0.9953	*0.9977	*0.9985	*0.9927	*0.9989	*0.9982	
RSD (%)	-	7.8	6.1	7.0	6.8	6.2	4.7	
Wellenlänge (nm)	270	n.b.	n.b.	585	300	500	585	
LOD (UVVIS)	1.33	-	-	0.33	0.26	0.26	0.15	
LLOD (UVVIS)	9.77	-	-	4.88	15.6	2.44	0.61	
ULOD (UVVIS)	2500	-	-	625	500	625	625	
r ^{2*} ,**	*0.9997	-	-	*0.9996	*0.9997	*0.9993	*0.9991	
RSD (%)	3.1	-	-	3.6	8	4.1	7.0	

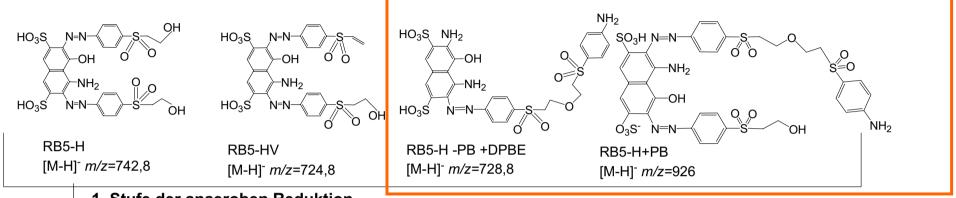
NWG (abs.) im pg-Bereich

RSD <10%

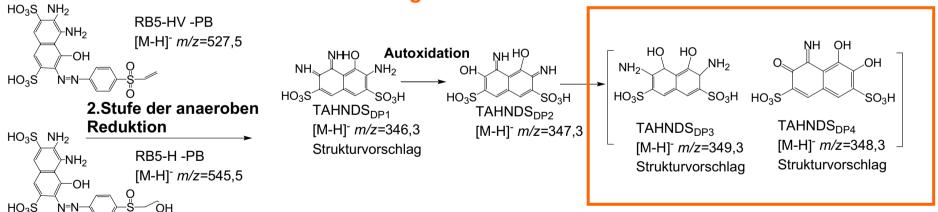

Lineare Messbereiche über
drei Dekaden,
hohe Linearität


*quadratische Regression und x^{-1} -Wichtung **lineare Regression und x^{-1} -Wichtung ***n.b. - nicht be

MS-Identifizierung von Haupt- und Nebenkomponenten im Feed (RB5)

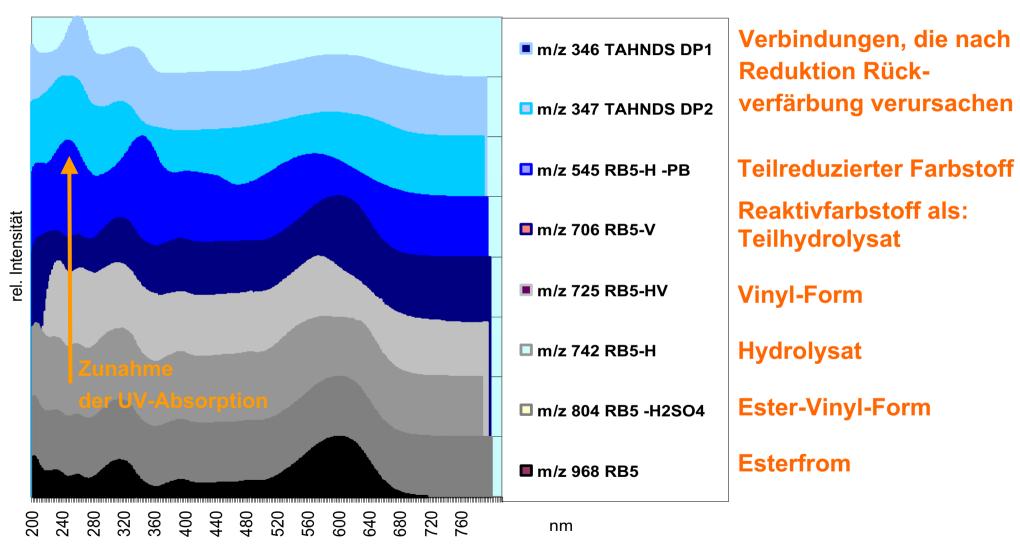


Nebenreaktionsprodukt aus Synthese oder Hydrolyse sowie weitere, noch nicht identifizierte Verbindungen (UNKs)



Identifizierung farbiger Intermediate mit Online-LC-DAD-MSMS

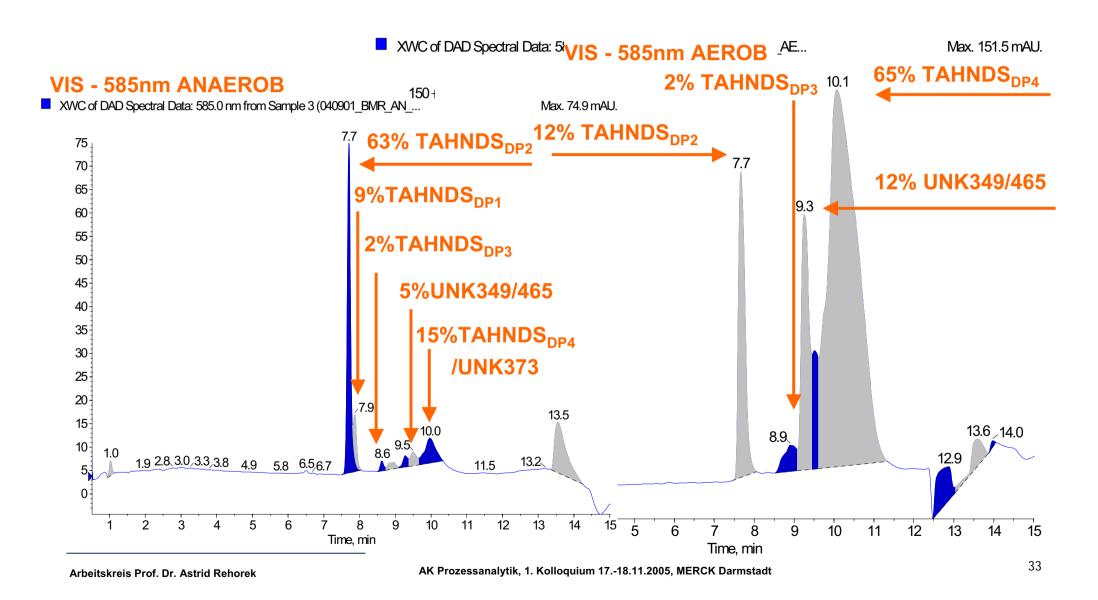
1. Stufe der anaeroben Reduktion


Neu identifizierte farbige Intermediate in Feed & Anaerob- & Aerob-Bioreaktor

Blaues Abwasser nach der Anaerobstufe - Reste von blauem Farbstoff?

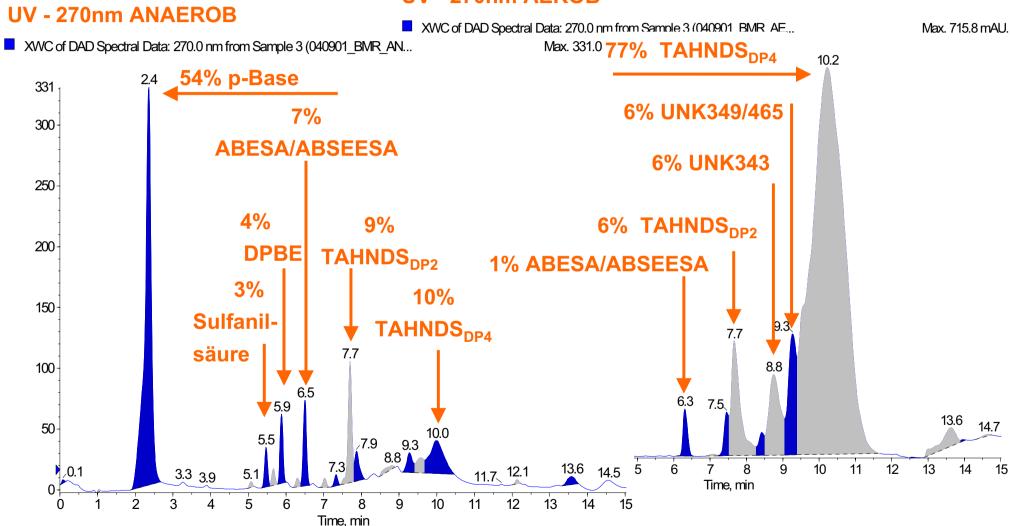
Identifizierung nicht-farbiger Intermediate mit Online-LC-DAD-MSMS

Abbauprodukte, die bei der Reduktion von Reaktivfarbstoffen freigesetzt werden


p-Base (PB) vinyl-p-Base (VPB) [M-H]⁻
$$m/z$$
=201,2 $[M-H]^ m/z$ =183,2 $[M-H]^ m/z$ =243,2 $[M-H]^ m/z$ =383,5

Neu identifizierte Abbauprodukte, die als Nebenkomponenten im Feed vorliegen oder bei der Reduktion von Farbstoffnebenkomponenten freigesetzt werden

Stoffspezifische Anteile an spektraler Extinktion im VIS-Bereich



Stoffspezifische Anteile an spektraler Extinktion im UV-Bereich

UV - 270nm AEROB

Anaerobe/Aerobe Abbaubarkeit von Feed-Haupt- und Nebenkomponenten

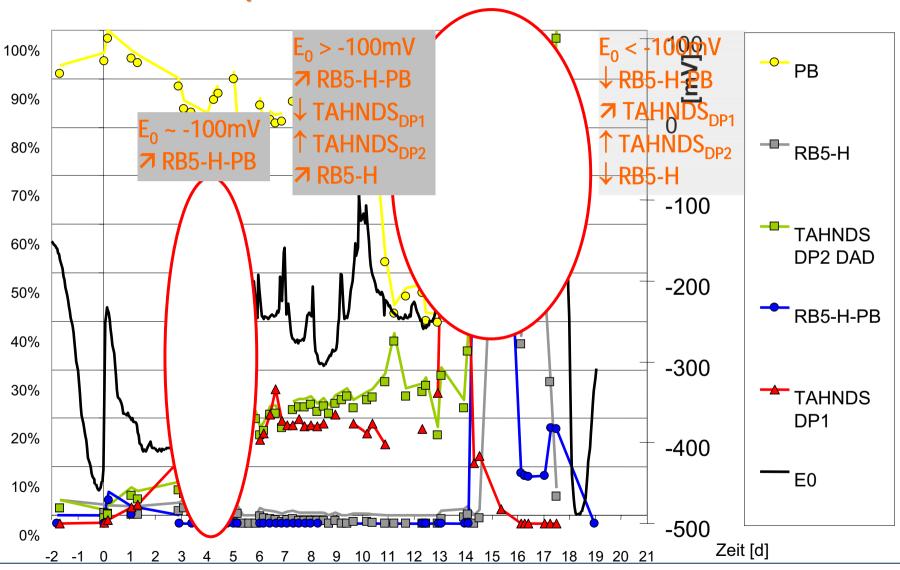
+ vorhanden/ gut abbaubar	Verbindung	RT	<i>m/z</i> Q1	m/z Q3	Feed	AN	AE	Anaerobe Abbaubarkeit	Aerobe Abbaubarkeit
- nicht gefunden/	NAPB	4,0	241,9	132,9	+	+	+	-	+
schlecht abbauba	uNK384	5,5	384,2	275,2	+	+	+	-	+
~ Schwankende	PBSE	6,1	280,2	171,2	+	+	+	-	+
Abbaubarkeit	UNK145	7,0	145,1	65,0	+	+	+	+	+
Abbudburken	RB-OH	8,5	264,5	79,9	+	+	+	+	+
	RB5-H	8,8	370,5	370,5	+	+	+	+	-
	RB5-H+DPBE	8,9	925,2	861,2	+	+	-	+	-
	RB-NH2	9,2	530,0	316,9	+	+	-	+	-
Farbige 🗸	RB5-H-H2O	9,2	723,9	660,0	+	+	-	+	-
Verbidungen	RB5-H+SO ₂	9,4	806,0	236,0	+	+	-	+	-
	Di-RB5-H	9,7	1467,4	927,4	+	-	-	+	-
	UNK733	9,9	733,0	236,0	+	+	-	+	-
	RB5-H-2H ₂ O	10	705,9	642,0	+	+	-	+	-
Nicht	ABSEESA	6,4	307,9	124,9	+	+	+	-	-
abbaubar	ABSESA	6,6	264,2	81,2	+	+	+	-	~

Anaerob/aerobe Abbaubarkeit von Intermediaten

- + vorhanden/gut abbaubar
- nicht vorhanden/abbaubar
- schwankendeAbbaubarkeit

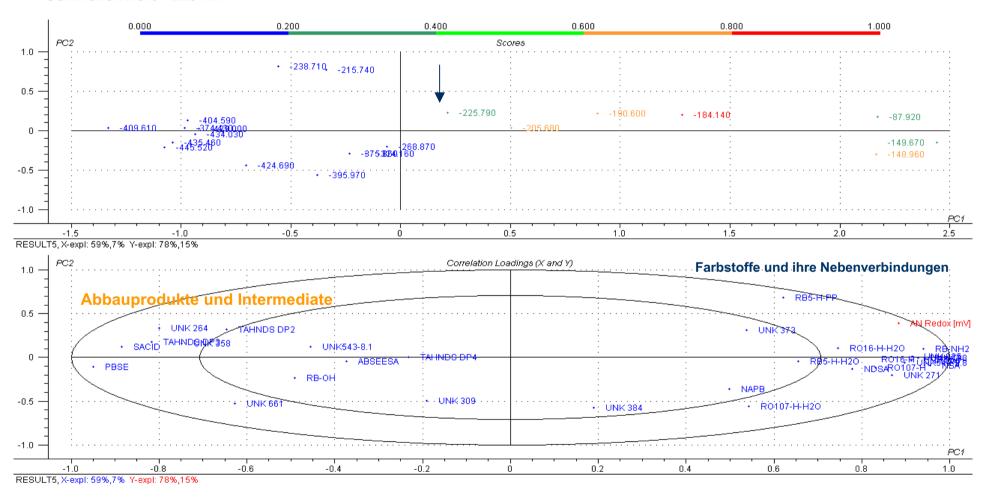
								anaerobic	aerobic
	Compound	RT	<i>m</i> /z Q1	<i>m</i> /z Q3	Feed	AN	AE	degradability	degradability
	p-Base	2,4	200		-	+	+	-	+
	DPBE	4,5	383,0	383	-	+	+	-	+
	Sulfanilsäure	5,2	171,8	79,9	-	+	+	-	+
	VPB	5,2	183,0	183	-	+	-	-	+
	HABSA	6,4	188,2	96,2	-	+	+	-	+
	RB5-H-PB	6,5	545,0	264,0	-	+	+	+	+
	UNK371	7,9	371,2	183,2	-	+	+	-	+
	UNK584	9,1	584,2	424,2	-	+	-	-	+
	UNK661	9,4	661,0	501,0	-	+	+	-	+
	UNK373	10,1	373,2	293,2	-	+	+	~	+
	TAHNDS _{DP3}	8,1	347,9	188,1	+	+	-	-	~
	RB5-H-PB	8,3	545,0	264,0	-	+	+	+	~
	TAHNDS _{DP3}	8,9	347,9	188,1	-	+	+	~	~
	UNK386	7,8	358,0	278,0	-	+	+	~	~
П	TAHNDS _{DP2}	7,9	346,9	187,1	-	+	+	-	-
П	TANHDS _{DP1}	8,1	345,9	186,1	-	+	-	-	-
П	UNK543	8,4	543,1	463,1	-	+	+	-	-
	TAHNDS _{DP4}	10,4	348,9	189,1	-	+	+	-	-

Nicht abbaubar


Primäre Verursacher von Rückverfärbungen nach aerober Behandlung

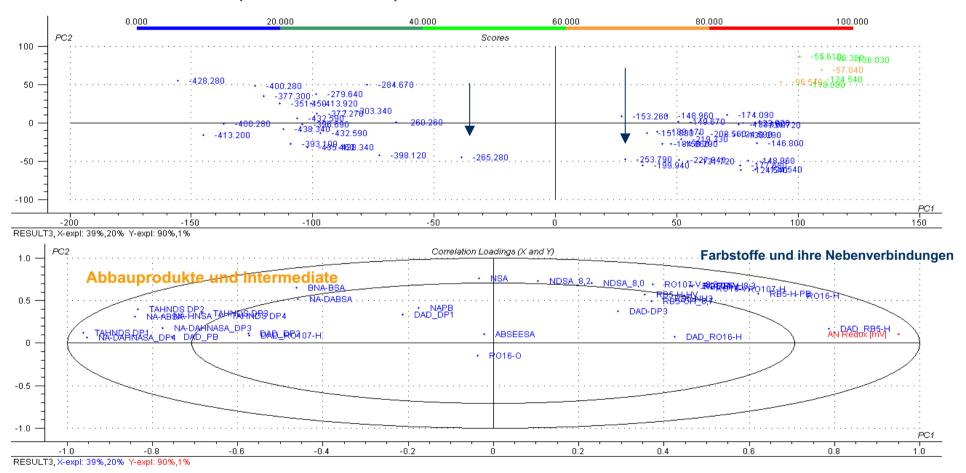
- Meist hochsubstituierte aromatische Verbindungen (Naphthalinderivate)
- Anionisch durch ein bis mehrere Sulfonsäuregruppen
- Nebenkomponenten aus Farbstoff und auch Abbauprodukte der Farbstoffe

Einfluss des Redoxpotenzials auf die anaerobe Reduktion



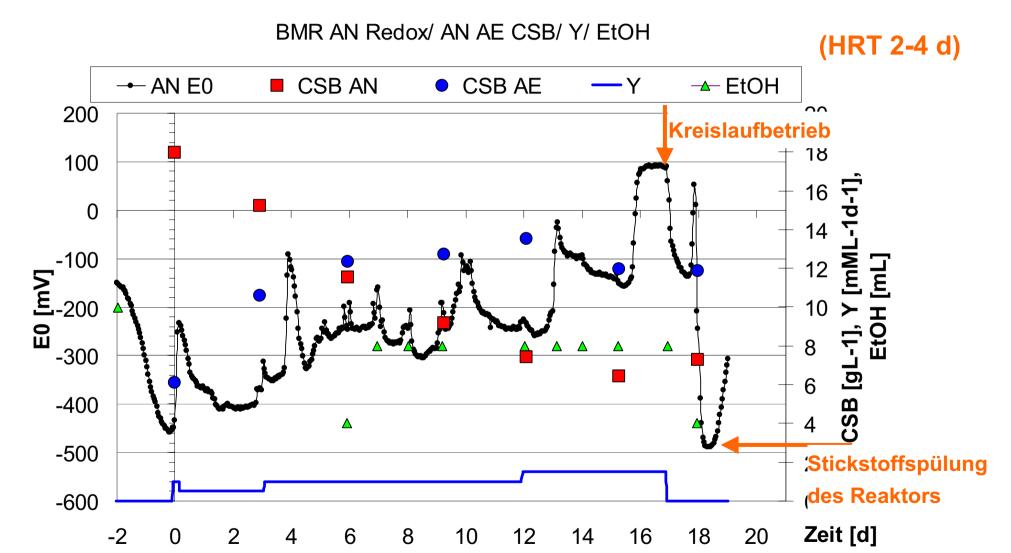
Einfluss des Redoxpotentials auf den Abbau von C. I. Reactive Black 5 im anaeroben Reaktor

Schwellenwert -225 mV



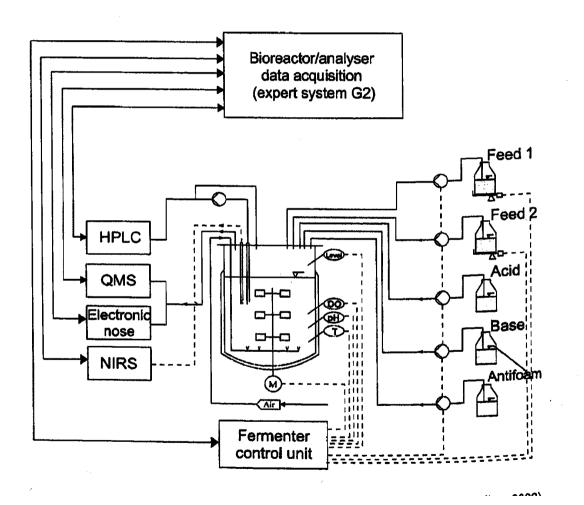
Einfluss des Redoxpotentials auf den Abbau von Navy Blue im anaeroben Reaktor

Schwellenwert: -255 mV (Trichromie-Versuch)



Partial Least Square (PLS-1), The Unscrambler® v9.2

Abhängigkeit des Redoxpotenzials von Ethanolgaben


Ergebnisse Monitoring und Optimierung der Betriebsparameter

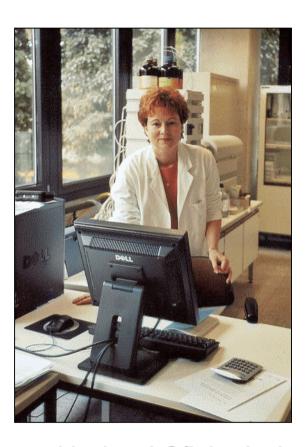
- Die anaerobe Reduktion korreliert mit dem Redoxpotenzial steuern!
- Unvollständige Reduktion von Diazo-Farbstoffen bei Redoxpotenzialen > -100mV
- Autoxidation von Intermediat TAHNDS_{DP1} zu TAHNDS_{DP2/DP3/DP4}
- Raumbelastungen von 0,5-1,5 mML-1d-1 werden bei $E_0 < -100$ mV ausreichend reduziert, 1,5 5 mM -1d-1 benötigen $E_0 < -250$ mV
- Beurteilung des stoffspezifische Abbauverhaltens über Online-LC-DAD MS Monitoring und Identifizierung der Verursacher von Restfarbtigkeit

Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling

Christian Cimander

Linköping University, Sweden

<u>Carl-Frederic Mandenius</u> Novozymes Biopharma AB, Sweden


J. Chem. Technol. Biotechnol. 77, 1157-1168, 2002

Arbeitskreis Chemische Verfahrens- und Prozessanalysentechnik an der FH Köln

astrid.rehorek@fh-koeln.de

Danke für Ihre Aufmerksamkeit!