

PAT Kolloquium 2012

Entwicklung eines MIR-Online-Messsystems für anaerobe Fermentationsanlagen

Stanislav Janz, Oliver Trauer, Astrid Rehorek, Michael Bongards

Agenda

- 1. Motivation und Zielsetzung
- 2. Prozessanalyse und Management Software
- 3. Ausblick Prozessautomatisierung
- 4. Prozess der Biogasbildung
- 5. Untersuchung des Mess- und Fermentationssystems
- 6. Ausblick Prozessanalytik

Motivation

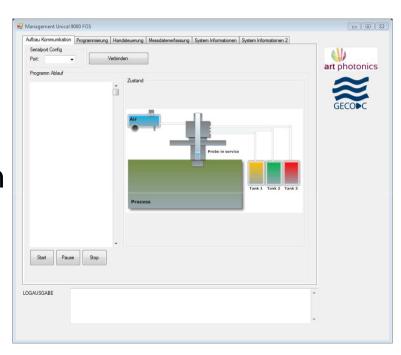
- 1. Verbesserung des Prozessverständnisses Biogasbildung nach wie vor Blackboxsystem
- 2. Vermeidung von gefährlichen Prozesszuständen Biogasprozess kann übersäuern
- 3. Optimierung und Regelung des Biogasprozesses Erhöhung des Anlagenwirkungsgrades Angepasste Anlagenauslegung

Projektziel

Entwicklung eines vollautomatisierten Inline-ATR-FTMIR Messsystems für den Einsatz in Biogasanlagen

Das Gesamtsystem besteht aus:

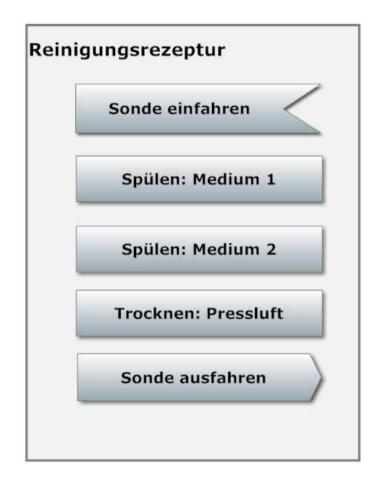
- 1. Spektrometer
- 2. Lichtwellenleiter / Sonde
- 3. Automatisierte Prozessschnittstelle
- 4. Behälter für Reinigungsflüssigkeiten
- 5. Hardwaresteuerungseinheit
- Bedieninterface und übergeordnete Prozessanalyse und Management System



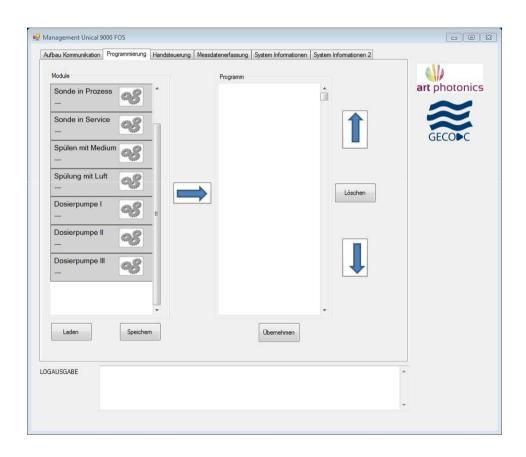
Prozessanalyse & Management Software

Anforderungen:

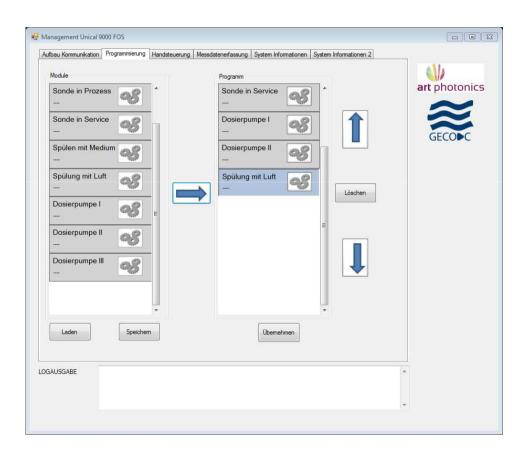
- Kombination von MIR-Online-Messung und Unical 9000
- Anbindung an weitere Automatisierungskomponenten
- Komfortable Bedienung und Konfiguration
- Einfache grafische Erstellung von Reinigungsprozeduren
- Automatische Erkennung und Beseitigung von Sondenverschmutzungen



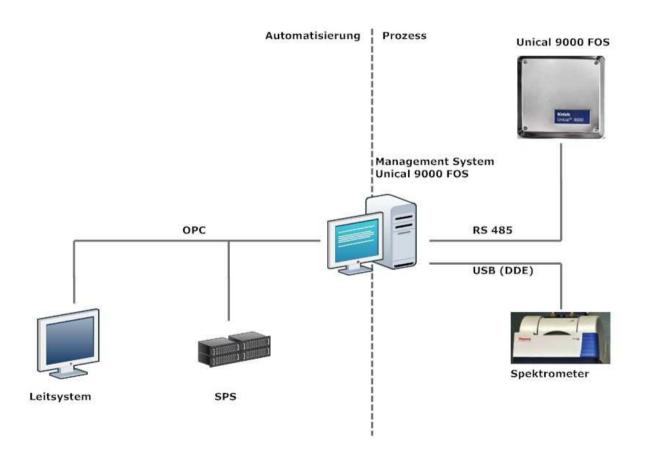
Definition von Reinigungsprozeduren



Grafische Erstellung von Reinigungsrezepturen



Grafische Erstellung von Reinigungsrezepturen



Prozessanbindung

Ausblick Analyseautomatisierung

- Kopplung des MIR Spektrometer an die Analysesoftware
- 2. Implementierung von Analysealgorithmen
- 3. Praxistest auf der Leppe-Deponie

Kontakt

Prof. Dr. M. Bongards: michael.bongards@fh-koeln.de

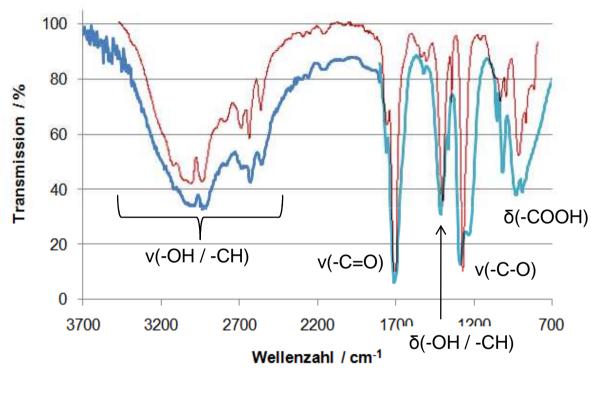
Dipl.-Inform. O. Trauer M.Sc: oliver.trauer@fh-koeln.de

Gummersbach Environmental Computing Center Fachhochschule Köln Campus Gummersbach, F10, Steinmüllerallee 1, 51643 Gummersbach/D

Anaerober Abbauprozess

LCVFA: Langkettige flüchtige organische Säuren SCVFA: Kurzkettige flüchtige organische Säuren

Wichtige Prozessparameter

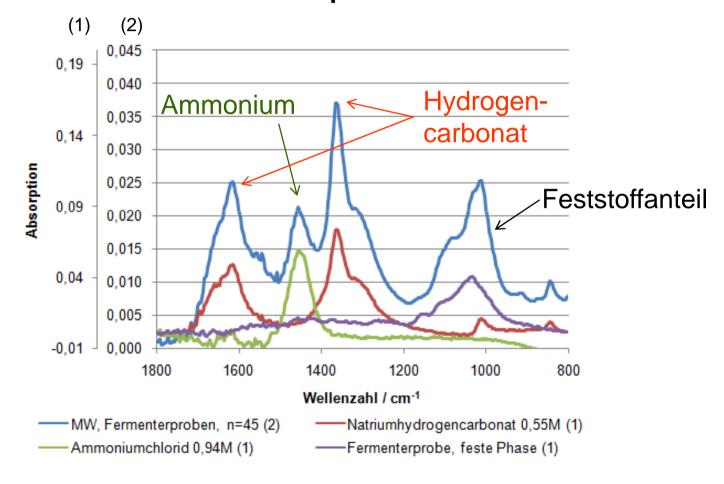

Wertebereich				•	
	von		bis		
Parameter /	g/l*	mmol/l	g/l*	mmol/l	
NH ₄ -N	1.4	77.8	2.85	158.3	*Quelle: Hölker, U., 2008: Gerüchteküche schließen, Biogas Journal, 4, http://www.bioreact.de/images/stories/pdf / Biogas-Journal_04-2008.pdf, 10.10.2011, 12:09
TS / g/kg	74	-	-	-	
oTS / g/kg	54	-	-		
TAC (CaCO ₃)	8	79.9	15	149.9	
FOS (Essigsäure)	2.05	34.1	6.5	108.2	
FOS/TAC	0.11	0.43	0.55	0.72	
Säuren /	g/l*	mmol/l	g/l*	mmol/l	Fmv / mmol/g
Essig-	0	0	2.99	49.79	16.65
Propion-	0	0	0.60	8.10	13.50
Butter-	0	0	0.05	0.57	11.35
Isobutter-	0	0	0.00	0.00	11.35
Valerian-	0	0	0.11	1.08	9.79
Isovalerian-	0	0	0.00	0.00	9.79
Capron-	0	0	0.02	0.17	<u>8.61</u>

Eingrenzung des Wellenzahlbereiches anhand des Essigsäurespektrums

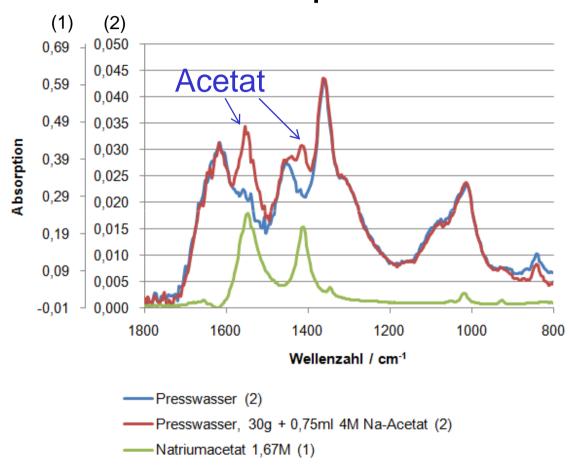
— Sonde 058, ES ≥99,9%, MCT —— Sonde 114, ES ≥99,9%, MCT

gemessenes Essigsäurespektrum

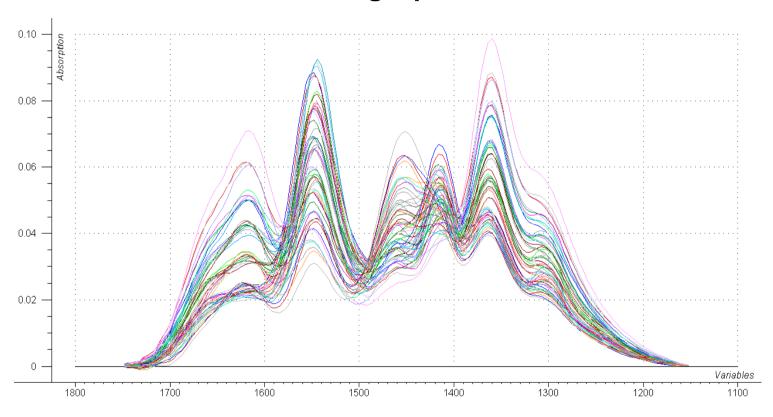
Datenbankspektrum Essigsäure


(Quelle: http://webbook.nist.gov, gemessen in CCl₄)

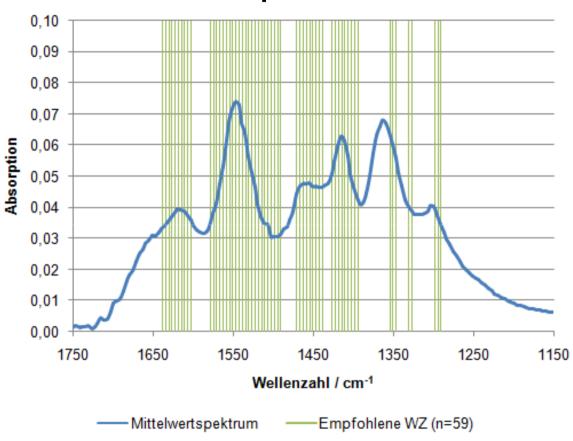
Charakterisierung von Spektren realer Fermenterproben



Charakterisierung von Spektren realer Fermenterproben



Untersuchung zur Auswertbarkeit von Mischungsspektren



Halbsynthetische Proben, Maximalkonzentrationen liegen ca. 9-(Acetat), 56- (Propionat), 6- (Ammonium) und 5-fach (Hydrogencarbonat) über den Konzentrationen realer Anlagen*

Reduktion des spektralen Bereiches

- Reduktion des spektralen Bereiches auf 59 diskrete Wellenzahlen
- •Methode nach Brown P.J.

Ausblick Prozessanalytik

- Untersuchung realkonzentrierter Mischungsproben
- Spektrenkorrelation mit Parametern FOS, TAC und NH₄-N

Kontakt

Prof. Dr. A. Rehorek: astrid.rehorek@fh-koeln.de

Dipl.-Ing. (FH) S. Janz: stanislav.janz@smail.fh-koeln.de

PRA&PAT Center

Fachhochschule Köln Campus Leverkusen, F11, Kaiser-Willhelm-Allee, 51368 Leverkusen/D

Vielen Dank!

PRA&PAT Center

Prof. Dr. A. Rehorek: astrid.rehorek@fh-koeln.de

Dipl.-Ing. (FH) S. Janz: stanislav.janz@smail.fh-koeln.de

Gummersbach Environmental Computing Center

Prof. Dr. M. Bongards: michael.bongards@fh-koeln.de

Dipl.-Inform. O. Trauer M.Sc: oliver.trauer@fh-koeln.de

